
New drug candidates for liposomal delivery identified by computer
modeling of liposomes' remote loading and leakage

Ahuva Cern a,b,⁎, David Marcus c, Alexander Tropsha d, Yechezkel Barenholz a,1, Amiram Goldblum b,1

a Laboratory of Membrane and Liposome Research, Department of Biochemistry, IMRIC, The Hebrew University - Hadassah Medical School, Jerusalem, Israel
b Molecular Modeling and Drug Design Laboratory, The Institute for Drug Research, The Hebrew University of Jerusalem, Israel
c European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
d The Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA

a b s t r a c ta r t i c l e i n f o

Article history:

Received 10 January 2017
Accepted 14 February 2017
Available online 16 February 2017

Remote drug loading into nano-liposomes is in most cases the best method for achieving high concentrations of
active pharmaceutical ingredients (API) per nano-liposome that enable therapeutically viable API-loaded nano-
liposomes, referred to as nano-drugs. This approach also enables controlled drug release. Recently, we construct-
ed computational models to identify APIs that can achieve the desired high concentrations in nano-liposomes by
remote loading. While those previous models included a broad spectrum of experimental conditions and dealt
only with loading, here we reduced the scope to the molecular characteristics alone. We model and predict API
suitability for nano-liposomal delivery by fixing the main experimental conditions: liposome lipid composition
and size to be similar to those of Doxil® liposomes. On that basis, we add a prediction of drug leakage from
the nano-liposomes during storage. The latter is critical for having pharmaceutically viable nano-drugs. The
“load and leak”modelswere used to screen two largemolecular databases in search of candidate APIs for delivery
by nano-liposomes. The distribution of positive instances in both loading and leakage models was similar in the
two databases screened. The screening process identified 667molecules that were positives by both loading and
leakage models (i.e., both high-loading and stable). Among them, 318 molecules received a high score in both
properties and of these, 67 are FDA-approved drugs. This group ofmolecules, having diverse pharmacological ac-
tivities, may be the basis for future liposomal drug development.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Liposomes are a leading drug delivery system for parenteral use.
Since the first liposomal drug, Doxil® which was approved by the FDA
in 1995 [1,2], 13 more liposomal drugs were approved by the FDA,
half of which are nano-drugs [3]. More liposomal drugs are now in clin-
ical trials [4,5]. Nano-liposomes are efficacious for treating a number of
cancers; infectious diseases (bacterial [6], fungal [7], and viral [8,9]);
and neurodegenerative and inflammatory disorders [10]. In these dis-
eases nano-liposomes utilize the enhanced permeability and retention
(EPR) effect and deliver the drug selectively to the diseased tissues
[11–14]. Most active pharmaceutical ingredients (APIs) are not suitable
for “passive” loading into nano-liposomes as this loading method does
not achieve the desired API concentration in the nano-liposomes re-
quired for sufficient therapeutic efficacy in humans [15]. In order to ob-
tain a viable nano-drug formulation, the API should fulfill several

conditions: (i) the concentration of the drug in the nano-liposomes
should be high enough for administering a therapeutic dose for
human treatment, (ii) the liposomal nano-drug product should be sta-
ble upon storage, and (iii) drug release in blood circulation in vivo
should be slow to enable distribution of enough drug-loaded liposomes
to the target (disease) site, where the drug should be released at thera-
peutically significant levels [15].

Nano-liposomes have an extremely small (nano) internal volume. A
single PEGylated nano-liposome before remote loading of doxorubicin
has a trapped aqueous volume,measured by cryo-transmission electron
microscopy, of 133 ± 18 nm3·103, which after remote loading of doxo-
rubicin increases to 150 ± 20 nm3·103 (our unpublished data). This
makes passive loading ofmost drugs a non-viable option, as a therapeu-
tically sufficient quantity of drug loading required for human treatment
cannot be reached. The method of remote (active) loading was devel-
oped to overcome this major obstacle and to reach a sufficiently high
intra-liposomal drug concentration of several hundredmM[16–18]. Re-
mote loading is based on the use of liposomes exhibiting ion and/or pro-
ton gradients as the driving force for getting drugs into liposomes. This
loading method requires the drug to be an amphipathic weak base [16,
18,19] or weak acid [20]. An ammonium ion gradient is used
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successfully for the remote loading of amphipathic weak bases [16,18,
21], while an acetate gradient is very effective for the remote loading
of amphipathic weak acids [22–25]. Remote loading is important, not
only for drug loading into liposomes, but also for retaining the drug in-
side the liposomes. Recently it has become clear that remote loading is
also important to achieve controlled drug release at the disease site [1,
2,26]. In some cases, APIs that are not amphipathic weak acids or
bases can be chemically modified to amphipathic weak acid or base
prodrugs in order to be remote loaded to liposomes. Such is the case
with steroids modified to their hemisuccinate derivatives, which are
amphipathic weak acids and are converted upon their release to the ac-
tive steroid [22,27,28]. Another approach to load non-amphipathic
weak acids or bases by remote loading is to complex the drug with cy-
clodextrins which are amphiphatic weak acides or bases by themselves
that can be remotely loaded as a drug-cyclodextrin complex to lipo-
somes [29].

Not all molecules that are amphipathic weak acids or bases fulfill the
conditions required for having high enough drug concentration in lipo-
somes sufficient for human treatment. The availability of a large data
collection gathered on liposomal remote loading in-house (at the
Barenholz lab, described in [18]) and from the literature, enabled us re-
cently to develop Quantitative Structure–Property Relationship (QSPR)
models that were used to predict drug suitability for remote loading in
terms of loaded intra-liposome drug concentrations [23,30]. This previ-
ousmodel used hybrid descriptors composed of experimentally derived
descriptors (EDD) such as lipid composition and liposomes' size (9 de-
scriptors) and descriptors related to the molecular properties of the
drugs (184 descriptors) calculated from the 2-dimensional molecular
structures by suitable software. We demonstrated that computational
models are capable of identifying molecules that could achieve the de-
sired loaded drug concentration [23]. Themodels were validated exper-
imentally, aswe showed that drugs prioritized and selected from a large
drug library or from previous literature sources, indeed had the predict-
ed loading capacity [23]. The issue of stability upon storage (shelf life) of
the loaded nano-liposomeswas not dealt with in our previous papers. It
is however critical to the viability of such liposomal nano-drugs.

Following thesefirst attempts tomodel drug suitability for remote li-
posomal loading and their use for screeningmolecules, a fewdrawbacks
of themodel were found: the dependence of themodel on EDD, the rel-
atively narrow classification of good candidates, and the lack of predic-
tion of the essential component of leakage (to predict shelf life stability).

In the present study, we aim to improve the previous model by ad-
dressing these drawbacks. We created models that focus on the charac-
teristics of the API, while keeping formulation properties constant. This
was done by limiting the dataset used for modeling only for a narrow
range of lipid composition of nano-liposomes. The formulation features
selected are high-Tm liposome forming phosphatidylcholine
(PC ≥ 37 °C) and high mole% cholesterol, which is the most common
lipid composition for liposomal formulations currently used and most
of the available data are related to this range of lipid composition [3].
In addition, the previous narrow classification of a “good candidate”
was modified to include more molecules. Leakage upon storage might
be a major source of instability of liposomal formulations. Therefore,
we have similarly modeled stability related to leakage of API from
nano-liposomes during storagewhich is based onmolecular descriptors
alone. From a computational perspective, it is advantageous to restrict
experimental conditions because of the limited number of experimental
conditions known for eachmolecule. From the liposome technology ex-
perience, it may be assumed that an API that is efficiently loaded to lipo-
somes based on high-Tm liposomes' “forming lipids”will also showhigh
loading to low-Tm liposomes [21] although this assumption requires a
case per case evaluation.

Leakage of drugs from liposomes is important to model for many
reasons. It might critically limit the shelf-life stability of the liposomal
product and it is relevant to in vivo integrity,which is the basis for its su-
perior pharmacokinetic (PK) and biodistribution profile of the drug

delivered via the nano-liposomes. The superior PK profile is to a large
extent responsible for the superior performance of such nano-lipo-
somes based nano-drug [3,31]. The parameters that affect drug leakage
upon storage are derived from the physicochemical properties of the
drug and the liposomal composition as well as the storage medium
and storage temperature. The in vivo leakage (also termed in vivo re-
lease) which is required for therapeutic efficacy is a complex process.
This process is influenced by the liposomal composition and the biolog-
ical environment reached by the liposomes, which for blood includes
among others factors such as blood-hemodynamics, interaction with
blood cells and with plasma lipoproteins, interactions with different
opsonines and large dilution-induced release. In this study, we focused
on the leakage related only to shelf-life stability and, as described earli-
er, on the loading; themodels were constructed based onmolecular de-
scriptors (properties) only.

Models that predict both loading and stability of liposomal drugs
present the most important properties for the suitability of a drug for
nano-liposomal delivery. The models generated in this study were
used for screening two large molecular libraries: the Comprehensive
Medicinal Chemistry (CMC) and Drug Bank (DB) databases, containing
together 13,700 unique molecules having biological activity. A group
of 667 molecules was found to have the loading and leakage properties
required by candidates for liposomal delivery. Of this group, 318 mole-
cules received the highest score in both properties. Of those high-scored
molecules, 67 are FDA-approved drugs. This group of molecules, having
diverse pharmacological activities, may be the basis for future liposomal
drug development.

2. Methods

2.1. Dataset preparation

Thepresent studywas aimed atmodeling two characteristics of lipo-
somal drugs: drug loading and drug leakage upon storage. Two datasets
were therefore collected and used tomodel each characteristic. The data
were collected from the literature and from in-house data of the
Barenholz lab. The data collected are presented in Supplementary Ta-
bles S1 and S2.

2.1.1. Descriptors

For eachmolecule in the datasets, molecular descriptors were calcu-
lated using theMolecular Operating Environment (MOE) software [32];
A complete list of descriptors is given in Supplementary Table S3.

2.1.2. Loading dataset

Molecules were included in the dataset only if their remote loading
was tested for liposomes containing high-mole% cholesterol (≥30%)
and high-Tm phospholipid (≥37 °C). Based on previous information,
30% is the lowest mole% cholesterol that avoids extensive leakage of
the formulation at 37 °C [33]. Some negative instances were added to
the dataset although loaded to low-Tm liposomes. This was done only
in cases of loading efficiency of not N50%. Loading efficiency is assumed
not to be affected by membrane composition as long as the loading is
performed at a temperature above the Tm of the phospholipid [21].
However, due to leakage that may occur rapidly for low-Tm lipids (for
which storage temperature is close to the Tm), leakage may occur
from the time of loading to the time of analysis. Therefore, we could
not always assume that low loading to low-Tm membranes will also
be low loading to high-Tm membranes. Negative instances that were
low loaded to low-Tm membranes were therefore entered to the
dataset only if their loading was not borderline, i.e., in cases of not
N50% loading efficiency at a drug/lipid (D/L) mole ratio of ≤0.2.

The classification of positive instances was slightly changed (com-
pared to the previous study [30]) to broaden the criteria for positive in-
stances. In the previous study, positive instances (high loading) were
those having ≥70% loading efficiency at D/L mole ratio of ≥0.3. In the
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present study we added to the group of positive instances those that
showed ≥90% loading efficiency at D/L ratio of ≥0.2. This classification
is based on liposomal product requirements. By assuming a 150 mg
dose of an API having a molecular weight of 500 Da that is needed to
be administered in 100 ml infusion volume (higher volumes will result
in longer infusion time and higher lipid administration) results in a re-
quired encapsulated drug concentration of 3.0 mM. Assuming hydroge-
nated soy phosphatidylcholine (HSPC) concentration of 12 mM (as
found in Doxil®) results in a D/L ratio of 0.25. In addition, the influence
of the threshold selected onmodel performancewas tested as described
in Section. 3.1.

The final loading dataset consisted of 67 molecules from the litera-
ture [17,24,34–80] and from in-house data (compared to the 46 mole-
cules in the previous study [30]), of which 23 were classified as
positives (high loading) and 44 were classified as negatives (low load-
ing). The loading dataset is presented in Supplementary Table S1.

2.1.3. Leakage dataset

Leakage upon storage is a characteristic of a liposomal drug that de-
termines an important aspect of its shelf-life stability. In terms of stabil-
ity, a drug product should retain N90% of label claim of potency over its
shelf-life period when stored at recommended conditions [81]. Lipo-
somes are usually stored at refrigerator conditions, and therefore drug
leakage of b10% over 1 year of storage at 4 °C would represent a stable
product in terms of drug leakage. However, the data collected consisted
ofmanydifferent assays to evaluate drug leakage other than storage sta-
bility. The experimental data collected were first evaluated to contain
only assays that were predictive of storage stability.

Based on the above regulation, and the data available, molecules
were classified as positives (slow leaking) and negatives (rapid leaking)
based on their leakage over time from rigid membrane liposomes con-
taining high mole% cholesterol (≥30%). Slow leaking instances were
those showing lower than 10% leakage at 4 °C in more than a month,
or at higher temperature (25 °C or 37 °C) in N24 h. Rapid leaking in-
stances were those showing N10% leakage at 4 °C in less than a
month, or at higher temperature in b24 h. No other classification for
slow or rapid leaking instances could apply. Note that two instances,
showing slow leakage, tested in the presence of plasma were added to
the dataset [52]. In these cases, the liposomal formulation was
PEGylated, assuming that slow leaking in plasma will probably show
slow leaking without plasma. In most cases plasma protein binding to
liposomes was shown to decrease liposomal stability [82]. However, a
few cases reported the opposite, showing that plasma protein increased
liposomal stability [83]. The two cases used in our dataset were
PEGylated, and there is a low chance that the plasma proteinswill stabi-
lize this membrane. We therefore assumed that in these cases slow
leaking in the presence of plasmawill show slow leaking also upon stor-
age. The final leakage dataset consisted of 27 molecules from the litera-
ture [24,36,37,45–47,52,54,57,60,61,65,70,73,75,76,84–87] and from
in-house data. Of these, 15 molecules were classified as slow leaking
(positives) and 12 were classified as rapid leaking (negatives). Leakage
dataset is presented in Supplementary Table S2. Twenty-three mole-
cules in the leakage dataset (out of 27)were also included in the loading
dataset. Most of the molecules that were positives (slow leaking) in
leakage were also positives (high loading) in loading and vice versa.

2.2. Computational methods

2.2.1. Iterative Stochastic Elimination (ISE) [88]

ISE is a search and optimizationmethod for extremely complex com-
binatorial problems. Among others, ISE can optimize the selection of fil-
ters that are able to distinguish between molecules from different
activity classes. Each filter contains 4 or 5 ranges of different molecular
properties (“descriptors”), and filters differ from each other by their
ability to distinguish between activity classes.

The process of optimization begins with a large set of variables each
having many values, starting with a huge number of possible combina-
tions of variables and values that may be larger than 10100. That huge
number is reduced in iterations to a manageable number of combina-
tions, in the millions or less, which are exhaustively calculated and
sorted based on scoring. Application of ISE thus produces a model that
is constructed of a set of best scored filters. Once such a model has
been produced, the ranking index of any other molecule may be deter-
mined by its ability to pass (or fail to pass) that model's filters. A mole-
cule is scored by combining these filters' weights (adding upon passage,
subtracting upon failure to pass) to create a normalized index whose
values are between −1 (negative) and +1 (positive). Molecules that
pass more filters receive a higher index. The ranking model calculation
is composed of the following steps:

• Single range optimization— finding the best ranges of each separate
descriptor that maximize the ability to distinguish between two clas-
ses. 186 descriptors were calculated by MOE for each molecule, of
which highly correlated ones and descriptors with very low standard
deviations were eliminated, ending in some 150 final descriptors.

• Filters optimization—afilter is produced by combining ranges of a few
descriptors, whose total number is given at the outset, and is usually 4
or 5. Each filter is picked by a random choice of descriptors and scored
based on its ability to distinguish between actives (which can be pre-
dicted correctly as “True Positives”, TP orwrongly as “False Negatives”,
FN) and decoys (predicted correctly are “True Negatives”, TN or
wrongly as “False Positives”, FP) from the learning set. The Matthews
Correlation Coefficient (MCC, Eq. (1) below), uses the results of these
four criteria (TP, FN, TN, FP) to score each randomly picked filter, and
once a huge sample of filters has been scored, ISE examines each de-
scriptor and eliminates descriptors' ranges that contribute consistent-
ly to the worst MCC scores. This constitutes a single iteration.
Sampling and eliminations continue in iterations to a point where
the total number of combinations (usually b106) allows to compute
exhaustively all remaining combinations.

MCC ¼
TP � TN−FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ � TP þ FNð Þ � TN þ FPð Þ � TN þ FNð Þ
p Eq: 1

where TP and TN are true positives and true negatives, respectively, and
FN and FP are false positives and false negatives, respectively.

• Constructing the model— it is now possible to sort all the combina-
tions based on their MCC values, subsequently to cluster the top fil-
ters, which constitute the “Model”.

• Virtual screening — The model is used to score any number of mole-
cules following the calculation of their molecular descriptors. Each
set of a molecule's descriptors is tested whether it passes or not
through each and every filter of the model. It gains score by passing
a filter but loses score if not. The final score for a molecule is a result
of a balance between those filters passed successfully and those that
were not successfully passed. A normalized score takes into account
the total number of filters. Each molecule thus gets an ISE index that
enables one to sort the results and pick the best (top-scored) mole-
cules (Eq. (2)).

Index ¼

∑
n

i¼1
δiactive

PTPi

PFPi
−δiinactive

PTNi

PFNi

n
Eq: 2

In Eq. (2), n is the number of filters, δactive = 1 if the molecule
passedfilter i as a positive, otherwise δactive=0. δinactive=1 if amol-
ecule passed a filter as a negative, otherwise δinactive=0. PTP/PFP is the
proportion of true to false positives in a particular filter and may be
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called an efficiency factor, whereas PTN/PFN is an inefficiency factor and
the proportion of true negatives versus false negatives.

2.2.2. External validation

Loading models were built under a 5-fold external validations
scheme: the dataset was randomly divided into five groups of nearly
equal size; four groups were combined and used iteratively as train-
ing sets, and the fifth groupwas employed as a test set. Final scores of
the learning set are thus based on each molecule being once in a test
set.

Leakage dataset is a relatively small dataset (27 molecules); for that
reason, the Leave One Out (LOO) validation scheme was employed. In
this process, models were built with 26 molecules, and one molecule
was tested as external. The process was repeated 27 times so that
each molecule was tested once as being “external”.

To characterize the predictive power of models, we used the follow-
ing statistics:

Sensitivity ¼ TP= TPþ FNð Þ; and

Specificity ¼ TN= TNþ FPð Þ:

Correct classification rate (CCR) was defined as follows:

CCR ¼ 0:5� Sensitivityþ Specificityð Þ

2.3. Databases screening

Two databases were used for screening:

1. Comprehensive Medicinal Chemistry (CMC) database containing
8402 molecules (after removing duplicate molecules) that are used
or have been studied as medicinal agents in humans, pharmacologi-
cal agents, or biologically active compounds.

2. Drug bank (DB) database containing 6831 drug entries (after remov-
ing duplicate molecules) including FDA-approved small molecule
drugs, FDA-approved biotech drugs, nutraceuticals, or experimental
drugs.

There is a total of 13,700 unique molecules (after subtracting 1533
molecules that are common to both databases).

The databases were screened by both loading and leakage models
after calculating structural descriptors for each molecule in the two da-
tabases. For the purpose of comparison, the databases were also
screened by the previous loading model [30] (consisting of hybrid de-
scriptors (EDD) and structural descriptors). The EDD used were those
corresponding to the formulation of Doxil.

3. Results and discussion

Previously, we published a QSPR model to predict the loading of a
drug by remote liposomal loading [30]. Using that model for screening
and testing the suitability of APIs revealed a few drawbacks of the
model: its dependence on EDD, the relatively narrow classification of
good candidates, and the lack of modeling the leakage. In this study
we therefore aimed to improve our previous model by:

(1) Simplifying the computation and modeling. We developed the
models to be independent of formulation properties (EDD) by
keeping liposome composition and size distribution similar to
Doxil, while focusing only on the properties of the loaded mole-
cules as descriptors. Namely, only nano-liposomes composed of
high-Tm phospholipid (N37 °C) and high mole% cholesterol
(≥30%) were included. Molecules in the dataset were classified
as “high” loaded or “low” loaded based on their loading only to
such nano-liposomes. In addition, the number of molecules
used for loading model building was increased from 47 to 67

molecules.
(2) The classification of positive instances was broadened to include

instances that showed ≥90% loading efficiency at D/L ratio of
≥0.2.

(3) Leakage upon storage wasmodeled to enable screening of mole-
cules for that important aspect of liposomal activity.

The following sections describe themodeling of loading and leakage
properties based on structural descriptors, as well as the results of the
virtual screening of the two databases by these models.

3.1. Loading model

The loading dataset wasmodeled by ISE employing the 5-fold exter-
nal validation scheme. Several thresholds were used for classification of
positive instances:

1. Loading efficiency of ≥70% at D/L ratio of ≥0.1.
2. Loading efficiency of ≥70% at D/L ratio of ≥0.2.
3. Loading efficiency of ≥70% at D/L ratio of ≥0.3.
4. Loading efficiency of ≥70% atD/L ratio of ≥0.3 and ≥90%atD/L ratio of

≥0.2.
The confusion matrices for the external validation of the four classi-

fication thresholds are presented in Table 1. The classification based on
0.1 threshold resulted in the best predictability parameters with a spec-
ificity of 0.87 and sensitivity of 0.75. Increasing the threshold to 0.2 and
0.3 did not significantly change the specificity but showed lower sensi-
tivity of the models. The 0.2/0.3 threshold (no. 4 above) resulted in the
highest specificity (0.89) and low sensitivity (0.52). Our model is aimed
to identify molecules suitable for nano-liposomal delivery system and
as such molecules having high loading efficiency at D/L ratio of 0.1
will only apply for highly potent drugs. We selected the 0.2/0.3 thresh-
old for identifying suitable molecules for this delivery system because it
complies with the usual dosing requirements of a nano-liposomal for-
mulation and it showed high specificity. Using this model for
candidate's identification has low chances for false positive instances
while the low sensitivity points out that many good candidates will
not be identified. The development of a nano-liposomal drug is a
major undertaking which requires much time and therefore our main
aim in this model building is to have the lowest possible number of
false positive instances, while false negative instances are less of a prob-
lem. The index distribution of the externally validated molecules of the
model built with the 0.2/0.3 classification are shown in Fig. 1. This figure
shows a trend in the results. At the extreme indexes, ≥0.5 and ≤−0.5,
there is a better classification in terms of low content of false negatives
and false positives. Our aim is to identify true positive molecules and
avoid false positive instances. According to Fig. 1, 29% (5/17) of themol-
ecules indexed above zero are false positives, and this value decreases

Table 1

Five-fold cross validation of different thresholds in the loading model.

Classification

0.1a 0.2b 0.3c 0.2/0.3d

Obs
low

Obs
high

Obs
low

Obs
high

Obs
low

Obs
high

Obs
low

Obs
high

Pred low 34 7 34 8 49 7 39 11
Pred high 5 21 8 17 9 2 5 12
% Correctly
classified

82.09 76.12 6.12 76.12

CCR 0.81 0.74 0.53 0.7
Specificity 0.87 0.81 0.84 0.89
Sensitivity 0.75 0.68 0.22 0.52

Pred- Predicted, Obs- Observed.
a High instances are defined as having loading efficiency of ≥70% at D/L ratio of ≥0.1.
b High instances are defined as having Loading efficiency of ≥70% at D/L ratio of ≥0.2.
c High instances are defined as having Loading efficiency of ≥70% at D/L ratio of ≥0.3.
d High instances are defined as having Loading efficiency of ≥70% at D/L ratio of ≥0.3

and ≥90% at D/L of ≥0.2.
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with increasing index values; at indexes ≥ 0.5, the false positive in-
stances are 17% (2/12), and at indexes above 0.8, there are no false pos-
itive instances. Table 2 presents the descriptors thatwere found in N10%
of thefilters obtained for thismodel. The important descriptorswere re-
lated to partial charges; PEOE_VSA-1 (54.4%) and PEOE_VSA_FHYD
(29.8%). Other important descriptors were rotatable bonds (opr_nrot,
b_rotN), sum of surface area of polar atoms (vsa_pol), topological
polar surface area (TPSA), and others. The list of structural descriptors
names and explanations may be found in Supplementary Table S3.

CMC and DB databases were screened by this model (based on 0.2/
0.3 classification and structural descriptors). The screening results
were compared to the screening obtained by the hybrid descriptors
loading model (our previously published loading model [30]). Figs. 2
and 3 present the comparison. Table 3 summarizes these results.
Screening by the new loading model resulted in ~14–15% of the mole-
cules of both databases being identified as positives. This is a higher
value than that obtained for the previous model (3–5%), probably due
to broadening the classification of positives in the new model (see
Section 2.1.2). The number of instances indexed above 0.5 (in the struc-
tural descriptorsmodel),which is shown in the indexdistributionfigure

(Fig. 1) to have a lower false positive fraction,wasmuch lower (248 and
293 for DB and CMC, respectively) which is 3.6% and 3.5% of the data-
bases, respectively. Identifying molecules indexed above 0.5 will result
in fewer chances of false positives, but at the expense of missing many
true positive instances indexed between 0 and 0.5%. Most instances of
positives in the hybrid model were also found to be positives in the
screening by the structural model (61–64%), and 74–80% of the mole-
cules that were indexed in the hybrid model ≥ 0.2 were also positives
in the structural descriptors model. In Figs. 2 and 3, the lower right cor-
ner shows the few positive instances, that are positives by the hybrid
descriptors loading model but negatives by the structural descriptors
loading model. The good agreement between the screening results of
the databases obtained by both models strengthens the predictability
of the new model.

3.2. Leakage model

The leakage dataset, due to its smaller size, was modeled by ISE
employing the “leave one out” (LOO) external validation scheme. In
this scheme, the dataset was modeled with 26 molecules, and one

Fig. 1. External validation: index distribution, loading model (0.2/0.3 threshold structural
descriptors).

Table 2

Descriptors found in N10% of the filters in the loading model (0.2/0.3 threshold). A complete list of descriptors is found in Supplementary Table S3.

Descriptors Descriptor category Definition [32] %
Occurrence

PEOE_VSA-1a Partial charge descriptors The sum of van der Waals (VDW) surface area of atom i where the partial charge of atom i is in the
range of −0.10 to −0.05

54.4

PEOE_VSA_FHYDa Partial charge descriptors Total hydrophobic VDW surface area 29.8
opr_nrot Atom and bond counts Rotatable bond count (Oprea method [89]) 27.0
vsa_pol Pharmacophore feature descriptors Approximation to the sum of VDW surface areas of polar atoms 24.7
b_rotN Atom and bond counts Number of rotatable bonds 20.7
TPSA Physical properties Polar VDW surface area 19.4
a_ICM Atom and bond counts Atom information content (mean) 17.1
lip_don Atom and bond counts Lipinski donor count 17.0
BCUT_SMR_1b Adjacency and distance matrix

descriptors
The BCUT descriptors using atomic contribution to molar refractivity 16.3

a_nCl Atom and bond counts Number of chlorine atoms 14.1
BCUT_SMR_2b Adjacency and distance matrix

descriptors
The BCUT descriptors using atomic contribution to molar refractivity 12.8

PEOE_VSA_FPNEGa Partial charge descriptors Fractional negative VDW surface area 12.2
a_acc Pharmacophore feature descriptor Number of H-bond acceptor atoms 11.8
SMR_VSA1 Subdivided surface areas The sum of VDW surface area of atom i where the molar refractivity is in the range of 0.11to 0.26 11.6
KierA1 Kier & Hall connectivity and kappa

shape indices
First kappa shape index (connectivity index) 11.2

lip_acc Atom and bond counts Lipinski acceptor count 11.1
GCUT_SLOGP_0b Adjacency and distance matrix

descriptors
The GCUT descriptors using atomic contribution to logP 10.9

a_IC Atom and bond counts Atom information content (total) 10.4

a PEOE - The Partial Equalization of Orbital Electronegativities is a method of calculating atomic partial charges.
b BCUT and GCUT descriptors encode atomic properties relevant to intramolecular interactions.

Fig. 2. Comparison between indexes of CMC screened molecules by the loading models:
structural descriptors vs hybrid descriptors.
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molecule was tested as external. This process was repeated 27 times so
that each molecule was tested once as an external. The external valida-
tion results are found in Table 4 and show high specificity (0.92) with
only one false positive instance, and low sensitivity (0.47) with 8 false
negative instances. Fig. 4 presents the distribution of the external vali-
dation index. As shown for the loading model, there is a trend in the
index distribution of the externally validated molecules. The fraction
of false negative instances was much lower at indexes below −0.5
(see the dotted line in Fig. 4). For positive instances, there was only
one false positive molecule and its index value was 0.24. However, the
misclassified positive instances (false negatives) were mainly indexed
between −0.55 to zero. 71% of the instances in this range were false
negatives. Changing the separating index from zero to −0.5 results in
an increase in the sensitivity (0.73) at the expense of specificity
(0.74). As explained for the loadingmodel, in this case of a nano-liposo-
mal delivery, testing the nano-liposomanl stability of amolecule is high-
ly time and effort consuming, therefore we prefer to have the lowest
possible number of false positives at the expense of high incidence of
false negative instances. The separation index between positive and
negative instances for the identification of candidates was therefore
assigned at an index = 0.0.

Table 5 presents the descriptors found in N10% of the leakage filters.
The most abundant filters were related to logP: GCUT_SLOGP_1 (40%)
and GCUT_SLOGP_0 (38%), and to the partial charge negative surface
area PEOE_VSA-3 (32%). Interestingly, the most important descriptors
in the loading model (occurring in N20% of the filters) did not include
logP-related descriptors, but were mainly related to partial charges.
This is in agreement with the differences between loading and leakage
processes. Loading is performed at a temperature above the Tm. The
membrane at this temperature has a relatively large free volume,
which allows for higher diffusion of the uncharged API, while the
main driving force for loading is the ion gradient, which is affected
mostly by the charge/polarity of the molecule. Therefore, loading will
be somewhat less sensitive to the lipophilicity of the drug. Leakage
from rigid membranes is a process occurring below the Tm of the

phospholipids tested in this modeling approach (storage at 4 °C).
Under these conditions, there is a small membrane free volume, and
therefore the lipophilicity of a drug has a larger contribution to the
process.

To summarize, not surprisingly, the major descriptors in both load-
ing and leakage processes are the degree of ionization combinedwith li-
pophilicity, which are very similar in both directions (loading and
leakage).What differs between the two processes is only themembrane
“free volume”, which is high at a temperature above the Tm (loading)
and low at a temperature below the Tm (leakage). This difference was
reflected in the important descriptors found for both modeled
characteristics.

The leakagemodel was used to screen CMC and DB databases. In ad-
dition, the DB database contains 1714 molecules that are already FDA-
approved, and those molecules were also screened separately. The
screening results are summarized in Table 6. These results were com-
pared to the indexes resulting from screening using the loading model
(structural descriptors). The comparisons are found in Figs. 5 and 6.
The results show that the fraction of positives across the databases is
similar, with 14.4–16.6% positives by the loading model and 7.2–10.4%
positives by the leakage model. 4.7–6.3% of the databases are predicted
to be positives by bothmodels. Among this group, 91 molecules are du-
plicates,which results in 667 uniquemolecules predicted to bepositives
by both models. High-scored molecules are defined as those having an
index above zero in the leakage model and above 0.5 in the loading
model. The loadingmodel shows a lower false positive fraction at index-
es ≥ 0.5 in the external validation (Fig. 1). This group of molecules ac-
counts for 2.4% (318 unique drugs, after removing duplicates) of the
databases and 3.9% of the FDA-approved drugs in DB (67 drugs). Fig. 7
shows the high-scored molecules in the approved DB. The red dots in
the figure represent drugs that are found in the datasets used for
model building (8 drugs). Other drugs in this figure come from different
pharmacological groups (antibiotics, antivirals, anticancers, and other).
This group of drugs may be the basis for new liposomal drugs.

Table 6 presents also the estimated number of false positives and
false negative instances in each database screening. As explained earlier,

Fig. 3. Comparison between indexes of DB screened molecules by the loading models:
structural descriptors vs hybrid descriptors.

Table 3

Number of predicted positive instances and their percentage in CMC and DB databases by
the hybrid vs structural descriptors loading models.

Model used/database screened CMC DB

No. % No. %

Positive in structural descriptors loading model
screening (current)

1159 14.4 1042 15.3

Molecules indexed above 0.5 in structural descriptors
loading model screening (current)

293 3.5 248 3.6

Positive in hybrid loading model screening (previous) 425 5.1 221 3.2

Table 4

LOO cross-validation, leakage model.

Zero index separating
line

−0.5 index separating
line

Obs rapid Obs slow Obs rapid Obs slow

Pred rapid 11 8 9 4
Pred slow 1 7 3 11
% Correctly classified 66.67 74.10
CCR 0.69 0.74
Specificity 0.92 0.75
Sensitivity 0.47 0.73

Fig. 4. External test indexes distribution, leakage model.
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the fraction of false negative instances expected by the use of leakage
model screening is high, however the estimated number of false posi-
tives is low which is highly important in our screening due to the asso-
ciated lengthy experimental validations. The number of false positive
instances is higher for the loading model and this number may be de-
creased by identifying the high scored candidates with loading
score ≥ 0.5.

4. Conclusions

Modeling suitability of drugs for delivery by nano-liposomes has al-
ready proven its advantages for liposomal drug design [23–25]. In this
study we improved the model by focusing on liposomal formulations
based on liposomes with lipid bilayers which are at the liquid ordered
(LO) phase that are based on high-Tm (above 37 °C) “liposome forming”
PCs such as HSPC, and on highmole% cholesterol (≥30mole%). The high
cholesterol content is responsible for transforming the lipid bilayer to a
LO phase [33] and is critical to achieve the desired liposome stability
upon storage and during in vivo blood circulation. This liposome com-
position is the most common for liposomal formulations currently

used and most of the available data are related to this range of lipid
composition. In addition, as this composition is the most applied cur-
rently, screening molecules suitability for this type of formulation
would be most advantageous. Having enough data on other liposomal
compositions will allow to developmodels for different liposomal com-
positions. The new models were thus constructed based only on the
structural properties of the APIs and the resulting models are capable
of predicting both remote loading and leakage of drugs, which are
both required for any useful future liposomal formulation.

As the liposome lipid composition and size distribution were kept
similar, experimentally derived descriptors (EDD) were not used for
model building. This allows the models to focus on the properties of
the API itself, giving these properties greater weight in the models. In-
terestingly, it was found that themost prevalent descriptors in the load-
ingmodels weremainly related to the partial charge and polar region of
the API, while the most important descriptors in the leakage models
were those related to logP. These findings are in agreementwith the dif-
ferences between loading and leakage processes. Loading is performed
at a temperature above the Tm. The membrane at this temperature has
a relatively large free volume, which allows for higher diffusion of the

Table 5

Descriptors found in N10% of the filters in leakage model. A complete list of descriptors is found in Supplementary Table S3.

Descriptors Descriptor category Definition [32] %
Occurrence

GCUT_SLOGP_1 Adjacency and distance matrix
descriptors

The GCUT descriptors using atomic contribution to logP 40.0

GCUT_SLOGP_0 Adjacency and distance matrix
descriptors

The GCUT descriptors using atomic contribution to logP 38.0

PEOE_VSA-3 Partial charge descriptors The sum of van der Waals (VDW) surface area of atom i where the partial charge of atom i is in the
range of −0.20 to ̶0.15

31.5

SMR_VSA1 Subdivided surface areas The sum of VDW surface area of atom i where the molar refractivity is in the range of 0.11–0.26 28.2
GCUT_PEOE_3 Adjacency and distance matrix

descriptors
The GCUT descriptors using atomic contribution to the PEOE partial charges 25.6

bpol Physical properties Difference of bonded atom polarizabilities 25.5
a_acc Pharmacophore feature descriptor Number of H-bond acceptor atoms 25.1
BCUT_SLOGP_2 Adjacency and distance matrix

descriptors
The BCUT descriptors using atomic contribution to logP 24.8

a_nP Atom and bond counts Number of phosphorus atoms 23.1
a_nCl Atom and bond counts Number of chlorine atoms 16.7
KierA2 Kier & Hall connectivity and kappa

shape indices
First kappa shape index (connectivity index) 16.4

PEOE_VSA-0 Partial charge descriptors The sum of VDW surface area of atom i where the partial charge of atom i is in the range of−0.05 to 0 16.2
a_nF Atom and bond counts Number of fluorine atoms 16.0
GCUT_SLOGP_2 Adjacency and distance matrix

descriptors
The GCUT descriptors using atomic contribution to logP 16.0

a_nH Atom and bond counts Number of hydrogen atoms 14.8
PEOE_VSA_POS Partial charge descriptors Total positive VDW surface area 14.5
TPSA Physical properties Polar VDW surface area 14.0
PEOE_VSA-2 Partial charge descriptors The sum of van der Waals (VDW) surface area of atom i where the partial charge of atom i is in the

range of ̶0.15 to ̶0.10
13.2

b_count Atom and bond counts Number of bonds 12.7

a- PEOE - The Partial Equalization of Orbital Electronegativities is a method of calculating atomic partial charges.
b- BCUT and GCUT descriptors encode atomic properties relevant to intramolecular interactions.

Table 6

Number of predicted positive instances in CMC and DB databases by the loading and leakage models based on structural descriptors.

CMC (8402 molecules) DB (6831 molecules) Approved DB (1714 molecules)

No. of
positives

%
Positives

Estimated
no. of FP

Estimated
no. of FN

No. of
positives

%
positives

Estimated
no. of FP

Estimated
no. of FN

No. of
positives

%
positives

Estimated
no. of FP

Estimated
no. of FN

Loading model 1159 14.4 341 1593 1042 15.3 306 1274 284 16.6 83 315
Loading model, high scored
(positive instances indexed ≥ 0.5)

293 3.5 49 1914 248 3.6 41 1554 63 3.7 10 390

Leakage model 768 9.1 96 3054 493 7.2 62 2535 178 10.4 22 614

Positive in both loading and leakage
models

439 5.2 319 4.7 108 6.3

High scored instances. Indexed ≥ 0.5
in loading and above zero in
leakage models

205 2.4 161 2.4 67 3.9
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uncharged amphipathic API, and the main driving force for loading is
the ion gradient, whose effectiveness is based on the charge/polarity
of themolecule. Therefore loadingwill be less sensitive to the lipophilic-
ity of the drug. Leakage from liposomes based on high Tm PC upon stor-
age at 4 °C occurs much below the Tm of the phospholipids (≥37 °C).
Under such conditions, there is only a small membrane “free volume”,
and therefore the lipophilicity of the drugs has a larger contribution to
the process. Screening two large molecular databases by the new
models resulted in 667 molecules predicted to be positives for their
loading and leakage properties. 318 molecules in this group were de-
fined as high-scored molecules, and 67 of those molecules are FDA-ap-
proved drugs. It should be noted that our models are focused on
obtaining high specificity of the model i.e. having the lowest number
of false negative instances, which in our case was at the expense of a
high fraction of false negative instances. Screening by the loading
model therefore results in 22% false negative instances out of all nega-
tives (low loading) instances and the leakage model results in 40%
false negatives out of the predicted negative group. However, the false
positive instances are lower with 17% false positives in the high scored
loading positives and 12.5% in the slow predicted instances. As
discussed in our previous publication [23], the computational screening
is the first screening, which requires further considerations related to li-
posomal drug design for the selection of a drug for nano-liposomal de-
livery. These considerations consist of the following: (1) The disease

for which the drug is intended should benefit from the EPR effect; (2)
Evaluation of the advantages that the liposomal delivery system has
for the specific molecule; (3) Dose per single administration should
not exceed 200 mg. An additional prerequisite is that the selected
drug meets the requirements of being an amphipathic weak acid or
base. Investigating the group of 67molecules from the approved DB da-
tabase that were highly scored by the models, molecules with diverse
approved indications were found: for treatments of migraine, asthma,
cancer, bacterial infections, HIV, pain and more. A deeper literature
search revealed additional indications for some of these molecules
that are not labeled indications; in many cases, these additional indica-
tionsmay gain value from formulating the drug in nano-liposomes. This
paper shows the advantages of using a computational approach to iden-
tifymolecules suitable for liposomal delivery. These comprised 2.4–3.9%
of the screened drugs. This coarse screening should be followed by a
thorough specific evaluation of the candidates obtained. Themodel pre-
sentedmay also be used to test the suitability of a specific molecule and
for the design of certain modifications to the drug that will make it suit-
able for this drug delivery system. This approach improves the process
of developing and the chances for successful nano-drug formulations.
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